404

[ Avaa Bypassed ]




Upload:

Command:

botdev@3.144.101.154: ~ $
// <functional> -*- C++ -*-

// Copyright (C) 2001-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 * Copyright (c) 1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 */

/** @file include/functional
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_FUNCTIONAL
#define _GLIBCXX_FUNCTIONAL 1

#pragma GCC system_header

#include <bits/c++config.h>
#include <bits/stl_function.h>

#if __cplusplus >= 201103L

#include <new>
#include <tuple>
#include <type_traits>
#include <bits/functional_hash.h>
#include <bits/invoke.h>
#include <bits/std_function.h>
#if __cplusplus > 201402L
# include <unordered_map>
# include <vector>
# include <array>
# include <utility>
# include <bits/stl_algo.h>
#endif

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

#if __cplusplus > 201402L
# define __cpp_lib_invoke 201411

  /// Invoke a callable object.
  template<typename _Callable, typename... _Args>
    inline invoke_result_t<_Callable, _Args...>
    invoke(_Callable&& __fn, _Args&&... __args)
    noexcept(is_nothrow_invocable_v<_Callable, _Args...>)
    {
      return std::__invoke(std::forward<_Callable>(__fn),
			   std::forward<_Args>(__args)...);
    }
#endif

  template<typename... _Types>
    struct _Pack : integral_constant<size_t, sizeof...(_Types)>
    { };

  template<typename _From, typename _To, bool = _From::value == _To::value>
    struct _AllConvertible : false_type
    { };

  template<typename... _From, typename... _To>
    struct _AllConvertible<_Pack<_From...>, _Pack<_To...>, true>
    : __and_<is_convertible<_From, _To>...>
    { };

  template<typename _Tp1, typename _Tp2>
    using _NotSame = __not_<is_same<typename std::decay<_Tp1>::type,
				    typename std::decay<_Tp2>::type>>;

  template<typename _Signature>
    struct _Mem_fn_traits;

  template<typename _Res, typename _Class, typename... _ArgTypes>
    struct _Mem_fn_traits_base
    {
      using __result_type = _Res;
      using __maybe_type
	= _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>;
      using __arity = integral_constant<size_t, sizeof...(_ArgTypes)>;
    };

#define _GLIBCXX_MEM_FN_TRAITS2(_CV, _REF, _LVAL, _RVAL)		\
  template<typename _Res, typename _Class, typename... _ArgTypes>	\
    struct _Mem_fn_traits<_Res (_Class::*)(_ArgTypes...) _CV _REF>	\
    : _Mem_fn_traits_base<_Res, _CV _Class, _ArgTypes...>		\
    {									\
      using __vararg = false_type;					\
    };									\
  template<typename _Res, typename _Class, typename... _ArgTypes>	\
    struct _Mem_fn_traits<_Res (_Class::*)(_ArgTypes... ...) _CV _REF>	\
    : _Mem_fn_traits_base<_Res, _CV _Class, _ArgTypes...>		\
    {									\
      using __vararg = true_type;					\
    };

#define _GLIBCXX_MEM_FN_TRAITS(_REF, _LVAL, _RVAL)		\
  _GLIBCXX_MEM_FN_TRAITS2(		, _REF, _LVAL, _RVAL)	\
  _GLIBCXX_MEM_FN_TRAITS2(const		, _REF, _LVAL, _RVAL)	\
  _GLIBCXX_MEM_FN_TRAITS2(volatile	, _REF, _LVAL, _RVAL)	\
  _GLIBCXX_MEM_FN_TRAITS2(const volatile, _REF, _LVAL, _RVAL)

_GLIBCXX_MEM_FN_TRAITS( , true_type, true_type)
_GLIBCXX_MEM_FN_TRAITS(&, true_type, false_type)
_GLIBCXX_MEM_FN_TRAITS(&&, false_type, true_type)

#if __cplusplus > 201402L
_GLIBCXX_MEM_FN_TRAITS(noexcept, true_type, true_type)
_GLIBCXX_MEM_FN_TRAITS(& noexcept, true_type, false_type)
_GLIBCXX_MEM_FN_TRAITS(&& noexcept, false_type, true_type)
#endif

#undef _GLIBCXX_MEM_FN_TRAITS
#undef _GLIBCXX_MEM_FN_TRAITS2

  template<typename _MemFunPtr,
	   bool __is_mem_fn = is_member_function_pointer<_MemFunPtr>::value>
    class _Mem_fn_base
    : public _Mem_fn_traits<_MemFunPtr>::__maybe_type
    {
      using _Traits = _Mem_fn_traits<_MemFunPtr>;

      using _Arity = typename _Traits::__arity;
      using _Varargs = typename _Traits::__vararg;

      template<typename _Func, typename... _BoundArgs>
	friend struct _Bind_check_arity;

      _MemFunPtr _M_pmf;

    public:

      using result_type = typename _Traits::__result_type;

      explicit constexpr
      _Mem_fn_base(_MemFunPtr __pmf) noexcept : _M_pmf(__pmf) { }

      template<typename... _Args>
	auto
	operator()(_Args&&... __args) const
	noexcept(noexcept(
	      std::__invoke(_M_pmf, std::forward<_Args>(__args)...)))
	-> decltype(std::__invoke(_M_pmf, std::forward<_Args>(__args)...))
	{ return std::__invoke(_M_pmf, std::forward<_Args>(__args)...); }
    };

  // Partial specialization for member object pointers.
  template<typename _MemObjPtr>
    class _Mem_fn_base<_MemObjPtr, false>
    {
      using _Arity = integral_constant<size_t, 0>;
      using _Varargs = false_type;

      template<typename _Func, typename... _BoundArgs>
	friend struct _Bind_check_arity;

      _MemObjPtr _M_pm;

    public:
      explicit constexpr
      _Mem_fn_base(_MemObjPtr __pm) noexcept : _M_pm(__pm) { }

      template<typename _Tp>
	auto
	operator()(_Tp&& __obj) const
	noexcept(noexcept(std::__invoke(_M_pm, std::forward<_Tp>(__obj))))
	-> decltype(std::__invoke(_M_pm, std::forward<_Tp>(__obj)))
	{ return std::__invoke(_M_pm, std::forward<_Tp>(__obj)); }
    };

  template<typename _MemberPointer>
    struct _Mem_fn; // undefined

  template<typename _Res, typename _Class>
    struct _Mem_fn<_Res _Class::*>
    : _Mem_fn_base<_Res _Class::*>
    {
      using _Mem_fn_base<_Res _Class::*>::_Mem_fn_base;
    };

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // 2048.  Unnecessary mem_fn overloads
  /**
   *  @brief Returns a function object that forwards to the member
   *  pointer @a pm.
   *  @ingroup functors
   */
  template<typename _Tp, typename _Class>
    inline _Mem_fn<_Tp _Class::*>
    mem_fn(_Tp _Class::* __pm) noexcept
    {
      return _Mem_fn<_Tp _Class::*>(__pm);
    }

  /**
   *  @brief Determines if the given type _Tp is a function object that
   *  should be treated as a subexpression when evaluating calls to
   *  function objects returned by bind().
   *
   *  C++11 [func.bind.isbind].
   *  @ingroup binders
   */
  template<typename _Tp>
    struct is_bind_expression
    : public false_type { };

  /**
   *  @brief Determines if the given type _Tp is a placeholder in a
   *  bind() expression and, if so, which placeholder it is.
   *
   *  C++11 [func.bind.isplace].
   *  @ingroup binders
   */
  template<typename _Tp>
    struct is_placeholder
    : public integral_constant<int, 0>
    { };

#if __cplusplus > 201402L
  template <typename _Tp> inline constexpr bool is_bind_expression_v
    = is_bind_expression<_Tp>::value;
  template <typename _Tp> inline constexpr int is_placeholder_v
    = is_placeholder<_Tp>::value;
#endif // C++17

  /** @brief The type of placeholder objects defined by libstdc++.
   *  @ingroup binders
   */
  template<int _Num> struct _Placeholder { };

  _GLIBCXX_END_NAMESPACE_VERSION

  /** @namespace std::placeholders
   *  @brief ISO C++11 entities sub-namespace for functional.
   *  @ingroup binders
   */
  namespace placeholders
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
  /* Define a large number of placeholders. There is no way to
   * simplify this with variadic templates, because we're introducing
   * unique names for each.
   */
    extern const _Placeholder<1> _1;
    extern const _Placeholder<2> _2;
    extern const _Placeholder<3> _3;
    extern const _Placeholder<4> _4;
    extern const _Placeholder<5> _5;
    extern const _Placeholder<6> _6;
    extern const _Placeholder<7> _7;
    extern const _Placeholder<8> _8;
    extern const _Placeholder<9> _9;
    extern const _Placeholder<10> _10;
    extern const _Placeholder<11> _11;
    extern const _Placeholder<12> _12;
    extern const _Placeholder<13> _13;
    extern const _Placeholder<14> _14;
    extern const _Placeholder<15> _15;
    extern const _Placeholder<16> _16;
    extern const _Placeholder<17> _17;
    extern const _Placeholder<18> _18;
    extern const _Placeholder<19> _19;
    extern const _Placeholder<20> _20;
    extern const _Placeholder<21> _21;
    extern const _Placeholder<22> _22;
    extern const _Placeholder<23> _23;
    extern const _Placeholder<24> _24;
    extern const _Placeholder<25> _25;
    extern const _Placeholder<26> _26;
    extern const _Placeholder<27> _27;
    extern const _Placeholder<28> _28;
    extern const _Placeholder<29> _29;
  _GLIBCXX_END_NAMESPACE_VERSION
  }

  _GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   *  Partial specialization of is_placeholder that provides the placeholder
   *  number for the placeholder objects defined by libstdc++.
   *  @ingroup binders
   */
  template<int _Num>
    struct is_placeholder<_Placeholder<_Num> >
    : public integral_constant<int, _Num>
    { };

  template<int _Num>
    struct is_placeholder<const _Placeholder<_Num> >
    : public integral_constant<int, _Num>
    { };


  // Like tuple_element_t but SFINAE-friendly.
  template<std::size_t __i, typename _Tuple>
    using _Safe_tuple_element_t
      = typename enable_if<(__i < tuple_size<_Tuple>::value),
			   tuple_element<__i, _Tuple>>::type::type;

  /**
   *  Maps an argument to bind() into an actual argument to the bound
   *  function object [func.bind.bind]/10. Only the first parameter should
   *  be specified: the rest are used to determine among the various
   *  implementations. Note that, although this class is a function
   *  object, it isn't entirely normal because it takes only two
   *  parameters regardless of the number of parameters passed to the
   *  bind expression. The first parameter is the bound argument and
   *  the second parameter is a tuple containing references to the
   *  rest of the arguments.
   */
  template<typename _Arg,
	   bool _IsBindExp = is_bind_expression<_Arg>::value,
	   bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
    class _Mu;

  /**
   *  If the argument is reference_wrapper<_Tp>, returns the
   *  underlying reference.
   *  C++11 [func.bind.bind] p10 bullet 1.
   */
  template<typename _Tp>
    class _Mu<reference_wrapper<_Tp>, false, false>
    {
    public:
      /* Note: This won't actually work for const volatile
       * reference_wrappers, because reference_wrapper::get() is const
       * but not volatile-qualified. This might be a defect in the TR.
       */
      template<typename _CVRef, typename _Tuple>
	_Tp&
	operator()(_CVRef& __arg, _Tuple&) const volatile
	{ return __arg.get(); }
    };

  /**
   *  If the argument is a bind expression, we invoke the underlying
   *  function object with the same cv-qualifiers as we are given and
   *  pass along all of our arguments (unwrapped).
   *  C++11 [func.bind.bind] p10 bullet 2.
   */
  template<typename _Arg>
    class _Mu<_Arg, true, false>
    {
    public:
      template<typename _CVArg, typename... _Args>
	auto
	operator()(_CVArg& __arg,
		   tuple<_Args...>& __tuple) const volatile
	-> decltype(__arg(declval<_Args>()...))
	{
	  // Construct an index tuple and forward to __call
	  typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
	    _Indexes;
	  return this->__call(__arg, __tuple, _Indexes());
	}

    private:
      // Invokes the underlying function object __arg by unpacking all
      // of the arguments in the tuple.
      template<typename _CVArg, typename... _Args, std::size_t... _Indexes>
	auto
	__call(_CVArg& __arg, tuple<_Args...>& __tuple,
	       const _Index_tuple<_Indexes...>&) const volatile
	-> decltype(__arg(declval<_Args>()...))
	{
	  return __arg(std::get<_Indexes>(std::move(__tuple))...);
	}
    };

  /**
   *  If the argument is a placeholder for the Nth argument, returns
   *  a reference to the Nth argument to the bind function object.
   *  C++11 [func.bind.bind] p10 bullet 3.
   */
  template<typename _Arg>
    class _Mu<_Arg, false, true>
    {
    public:
      template<typename _Tuple>
	_Safe_tuple_element_t<(is_placeholder<_Arg>::value - 1), _Tuple>&&
	operator()(const volatile _Arg&, _Tuple& __tuple) const volatile
	{
	  return
	    ::std::get<(is_placeholder<_Arg>::value - 1)>(std::move(__tuple));
	}
    };

  /**
   *  If the argument is just a value, returns a reference to that
   *  value. The cv-qualifiers on the reference are determined by the caller.
   *  C++11 [func.bind.bind] p10 bullet 4.
   */
  template<typename _Arg>
    class _Mu<_Arg, false, false>
    {
    public:
      template<typename _CVArg, typename _Tuple>
	_CVArg&&
	operator()(_CVArg&& __arg, _Tuple&) const volatile
	{ return std::forward<_CVArg>(__arg); }
    };

  // std::get<I> for volatile-qualified tuples
  template<std::size_t _Ind, typename... _Tp>
    inline auto
    __volget(volatile tuple<_Tp...>& __tuple)
    -> __tuple_element_t<_Ind, tuple<_Tp...>> volatile&
    { return std::get<_Ind>(const_cast<tuple<_Tp...>&>(__tuple)); }

  // std::get<I> for const-volatile-qualified tuples
  template<std::size_t _Ind, typename... _Tp>
    inline auto
    __volget(const volatile tuple<_Tp...>& __tuple)
    -> __tuple_element_t<_Ind, tuple<_Tp...>> const volatile&
    { return std::get<_Ind>(const_cast<const tuple<_Tp...>&>(__tuple)); }

  /// Type of the function object returned from bind().
  template<typename _Signature>
    struct _Bind;

   template<typename _Functor, typename... _Bound_args>
    class _Bind<_Functor(_Bound_args...)>
    : public _Weak_result_type<_Functor>
    {
      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
	_Bound_indexes;

      _Functor _M_f;
      tuple<_Bound_args...> _M_bound_args;

      // Call unqualified
      template<typename _Result, typename... _Args, std::size_t... _Indexes>
	_Result
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
	{
	  return std::__invoke(_M_f,
	      _Mu<_Bound_args>()(std::get<_Indexes>(_M_bound_args), __args)...
	      );
	}

      // Call as const
      template<typename _Result, typename... _Args, std::size_t... _Indexes>
	_Result
	__call_c(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
	{
	  return std::__invoke(_M_f,
	      _Mu<_Bound_args>()(std::get<_Indexes>(_M_bound_args), __args)...
	      );
	}

      // Call as volatile
      template<typename _Result, typename... _Args, std::size_t... _Indexes>
	_Result
	__call_v(tuple<_Args...>&& __args,
		 _Index_tuple<_Indexes...>) volatile
	{
	  return std::__invoke(_M_f,
	      _Mu<_Bound_args>()(__volget<_Indexes>(_M_bound_args), __args)...
	      );
	}

      // Call as const volatile
      template<typename _Result, typename... _Args, std::size_t... _Indexes>
	_Result
	__call_c_v(tuple<_Args...>&& __args,
		   _Index_tuple<_Indexes...>) const volatile
	{
	  return std::__invoke(_M_f,
	      _Mu<_Bound_args>()(__volget<_Indexes>(_M_bound_args), __args)...
	      );
	}

      template<typename _BoundArg, typename _CallArgs>
	using _Mu_type = decltype(
	    _Mu<typename remove_cv<_BoundArg>::type>()(
	      std::declval<_BoundArg&>(), std::declval<_CallArgs&>()) );

      template<typename _Fn, typename _CallArgs, typename... _BArgs>
	using _Res_type_impl
	  = typename result_of< _Fn&(_Mu_type<_BArgs, _CallArgs>&&...) >::type;

      template<typename _CallArgs>
	using _Res_type = _Res_type_impl<_Functor, _CallArgs, _Bound_args...>;

      template<typename _CallArgs>
	using __dependent = typename
	  enable_if<bool(tuple_size<_CallArgs>::value+1), _Functor>::type;

      template<typename _CallArgs, template<class> class __cv_quals>
	using _Res_type_cv = _Res_type_impl<
	  typename __cv_quals<__dependent<_CallArgs>>::type,
	  _CallArgs,
	  typename __cv_quals<_Bound_args>::type...>;

     public:
      template<typename... _Args>
	explicit _Bind(const _Functor& __f, _Args&&... __args)
	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
	{ }

      template<typename... _Args>
	explicit _Bind(_Functor&& __f, _Args&&... __args)
	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
	{ }

      _Bind(const _Bind&) = default;

      _Bind(_Bind&& __b)
      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
      { }

      // Call unqualified
      template<typename... _Args,
	       typename _Result = _Res_type<tuple<_Args...>>>
	_Result
	operator()(_Args&&... __args)
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as const
      template<typename... _Args,
	       typename _Result = _Res_type_cv<tuple<_Args...>, add_const>>
	_Result
	operator()(_Args&&... __args) const
	{
	  return this->__call_c<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

#if __cplusplus > 201402L
# define _GLIBCXX_DEPR_BIND \
      [[deprecated("std::bind does not support volatile in C++17")]]
#else
# define _GLIBCXX_DEPR_BIND
#endif
      // Call as volatile
      template<typename... _Args,
	       typename _Result = _Res_type_cv<tuple<_Args...>, add_volatile>>
	_GLIBCXX_DEPR_BIND
	_Result
	operator()(_Args&&... __args) volatile
	{
	  return this->__call_v<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as const volatile
      template<typename... _Args,
	       typename _Result = _Res_type_cv<tuple<_Args...>, add_cv>>
	_GLIBCXX_DEPR_BIND
	_Result
	operator()(_Args&&... __args) const volatile
	{
	  return this->__call_c_v<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}
    };

  /// Type of the function object returned from bind<R>().
  template<typename _Result, typename _Signature>
    struct _Bind_result;

  template<typename _Result, typename _Functor, typename... _Bound_args>
    class _Bind_result<_Result, _Functor(_Bound_args...)>
    {
      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
	_Bound_indexes;

      _Functor _M_f;
      tuple<_Bound_args...> _M_bound_args;

      // sfinae types
      template<typename _Res>
	using __enable_if_void
	  = typename enable_if<is_void<_Res>{}>::type;

      template<typename _Res>
	using __disable_if_void
	  = typename enable_if<!is_void<_Res>{}, _Result>::type;

      // Call unqualified
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	__disable_if_void<_Res>
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
	{
	  return std::__invoke(_M_f, _Mu<_Bound_args>()
		      (std::get<_Indexes>(_M_bound_args), __args)...);
	}

      // Call unqualified, return void
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	__enable_if_void<_Res>
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
	{
	  std::__invoke(_M_f, _Mu<_Bound_args>()
	       (std::get<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	__disable_if_void<_Res>
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
	{
	  return std::__invoke(_M_f, _Mu<_Bound_args>()
		      (std::get<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const, return void
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	__enable_if_void<_Res>
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
	{
	  std::__invoke(_M_f, _Mu<_Bound_args>()
	       (std::get<_Indexes>(_M_bound_args),  __args)...);
	}

      // Call as volatile
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	__disable_if_void<_Res>
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) volatile
	{
	  return std::__invoke(_M_f, _Mu<_Bound_args>()
		      (__volget<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as volatile, return void
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	__enable_if_void<_Res>
	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) volatile
	{
	  std::__invoke(_M_f, _Mu<_Bound_args>()
	       (__volget<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const volatile
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	__disable_if_void<_Res>
	__call(tuple<_Args...>&& __args,
	       _Index_tuple<_Indexes...>) const volatile
	{
	  return std::__invoke(_M_f, _Mu<_Bound_args>()
		      (__volget<_Indexes>(_M_bound_args), __args)...);
	}

      // Call as const volatile, return void
      template<typename _Res, typename... _Args, std::size_t... _Indexes>
	__enable_if_void<_Res>
	__call(tuple<_Args...>&& __args,
	       _Index_tuple<_Indexes...>) const volatile
	{
	  std::__invoke(_M_f, _Mu<_Bound_args>()
	       (__volget<_Indexes>(_M_bound_args), __args)...);
	}

    public:
      typedef _Result result_type;

      template<typename... _Args>
	explicit _Bind_result(const _Functor& __f, _Args&&... __args)
	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
	{ }

      template<typename... _Args>
	explicit _Bind_result(_Functor&& __f, _Args&&... __args)
	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
	{ }

      _Bind_result(const _Bind_result&) = default;

      _Bind_result(_Bind_result&& __b)
      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
      { }

      // Call unqualified
      template<typename... _Args>
	result_type
	operator()(_Args&&... __args)
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as const
      template<typename... _Args>
	result_type
	operator()(_Args&&... __args) const
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as volatile
      template<typename... _Args>
	_GLIBCXX_DEPR_BIND
	result_type
	operator()(_Args&&... __args) volatile
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}

      // Call as const volatile
      template<typename... _Args>
	_GLIBCXX_DEPR_BIND
	result_type
	operator()(_Args&&... __args) const volatile
	{
	  return this->__call<_Result>(
	      std::forward_as_tuple(std::forward<_Args>(__args)...),
	      _Bound_indexes());
	}
    };
#undef _GLIBCXX_DEPR_BIND

  /**
   *  @brief Class template _Bind is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Signature>
    struct is_bind_expression<_Bind<_Signature> >
    : public true_type { };

  /**
   *  @brief Class template _Bind is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Signature>
    struct is_bind_expression<const _Bind<_Signature> >
    : public true_type { };

  /**
   *  @brief Class template _Bind is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Signature>
    struct is_bind_expression<volatile _Bind<_Signature> >
    : public true_type { };

  /**
   *  @brief Class template _Bind is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Signature>
    struct is_bind_expression<const volatile _Bind<_Signature>>
    : public true_type { };

  /**
   *  @brief Class template _Bind_result is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Result, typename _Signature>
    struct is_bind_expression<_Bind_result<_Result, _Signature>>
    : public true_type { };

  /**
   *  @brief Class template _Bind_result is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Result, typename _Signature>
    struct is_bind_expression<const _Bind_result<_Result, _Signature>>
    : public true_type { };

  /**
   *  @brief Class template _Bind_result is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Result, typename _Signature>
    struct is_bind_expression<volatile _Bind_result<_Result, _Signature>>
    : public true_type { };

  /**
   *  @brief Class template _Bind_result is always a bind expression.
   *  @ingroup binders
   */
  template<typename _Result, typename _Signature>
    struct is_bind_expression<const volatile _Bind_result<_Result, _Signature>>
    : public true_type { };

  template<typename _Func, typename... _BoundArgs>
    struct _Bind_check_arity { };

  template<typename _Ret, typename... _Args, typename... _BoundArgs>
    struct _Bind_check_arity<_Ret (*)(_Args...), _BoundArgs...>
    {
      static_assert(sizeof...(_BoundArgs) == sizeof...(_Args),
                   "Wrong number of arguments for function");
    };

  template<typename _Ret, typename... _Args, typename... _BoundArgs>
    struct _Bind_check_arity<_Ret (*)(_Args......), _BoundArgs...>
    {
      static_assert(sizeof...(_BoundArgs) >= sizeof...(_Args),
                   "Wrong number of arguments for function");
    };

  template<typename _Tp, typename _Class, typename... _BoundArgs>
    struct _Bind_check_arity<_Tp _Class::*, _BoundArgs...>
    {
      using _Arity = typename _Mem_fn<_Tp _Class::*>::_Arity;
      using _Varargs = typename _Mem_fn<_Tp _Class::*>::_Varargs;
      static_assert(_Varargs::value
		    ? sizeof...(_BoundArgs) >= _Arity::value + 1
		    : sizeof...(_BoundArgs) == _Arity::value + 1,
		    "Wrong number of arguments for pointer-to-member");
    };

  // Trait type used to remove std::bind() from overload set via SFINAE
  // when first argument has integer type, so that std::bind() will
  // not be a better match than ::bind() from the BSD Sockets API.
  template<typename _Tp, typename _Tp2 = typename decay<_Tp>::type>
    using __is_socketlike = __or_<is_integral<_Tp2>, is_enum<_Tp2>>;

  template<bool _SocketLike, typename _Func, typename... _BoundArgs>
    struct _Bind_helper
    : _Bind_check_arity<typename decay<_Func>::type, _BoundArgs...>
    {
      typedef typename decay<_Func>::type __func_type;
      typedef _Bind<__func_type(typename decay<_BoundArgs>::type...)> type;
    };

  // Partial specialization for is_socketlike == true, does not define
  // nested type so std::bind() will not participate in overload resolution
  // when the first argument might be a socket file descriptor.
  template<typename _Func, typename... _BoundArgs>
    struct _Bind_helper<true, _Func, _BoundArgs...>
    { };

  /**
   *  @brief Function template for std::bind.
   *  @ingroup binders
   */
  template<typename _Func, typename... _BoundArgs>
    inline typename
    _Bind_helper<__is_socketlike<_Func>::value, _Func, _BoundArgs...>::type
    bind(_Func&& __f, _BoundArgs&&... __args)
    {
      typedef _Bind_helper<false, _Func, _BoundArgs...> __helper_type;
      return typename __helper_type::type(std::forward<_Func>(__f),
					  std::forward<_BoundArgs>(__args)...);
    }

  template<typename _Result, typename _Func, typename... _BoundArgs>
    struct _Bindres_helper
    : _Bind_check_arity<typename decay<_Func>::type, _BoundArgs...>
    {
      typedef typename decay<_Func>::type __functor_type;
      typedef _Bind_result<_Result,
			   __functor_type(typename decay<_BoundArgs>::type...)>
	type;
    };

  /**
   *  @brief Function template for std::bind<R>.
   *  @ingroup binders
   */
  template<typename _Result, typename _Func, typename... _BoundArgs>
    inline
    typename _Bindres_helper<_Result, _Func, _BoundArgs...>::type
    bind(_Func&& __f, _BoundArgs&&... __args)
    {
      typedef _Bindres_helper<_Result, _Func, _BoundArgs...> __helper_type;
      return typename __helper_type::type(std::forward<_Func>(__f),
					  std::forward<_BoundArgs>(__args)...);
    }

#if __cplusplus >= 201402L
  /// Generalized negator.
  template<typename _Fn>
    class _Not_fn
    {
      template<typename _Fn2, typename... _Args>
	using __inv_res_t = typename __invoke_result<_Fn2, _Args...>::type;

      template<typename _Tp>
	static decltype(!std::declval<_Tp>())
	_S_not() noexcept(noexcept(!std::declval<_Tp>()));

    public:
      template<typename _Fn2>
	_Not_fn(_Fn2&& __fn, int)
	: _M_fn(std::forward<_Fn2>(__fn)) { }

      _Not_fn(const _Not_fn& __fn) = default;
      _Not_fn(_Not_fn&& __fn) = default;
      ~_Not_fn() = default;

      // Macro to define operator() with given cv-qualifiers ref-qualifiers,
      // forwarding _M_fn and the function arguments with the same qualifiers,
      // and deducing the return type and exception-specification.
#define _GLIBCXX_NOT_FN_CALL_OP( _QUALS )				\
      template<typename... _Args>					\
	decltype(_S_not<__inv_res_t<_Fn _QUALS, _Args...>>())		\
	operator()(_Args&&... __args) _QUALS				\
	noexcept(__is_nothrow_invocable<_Fn _QUALS, _Args...>::value	\
	    && noexcept(_S_not<__inv_res_t<_Fn _QUALS, _Args...>>()))	\
	{								\
	  return !std::__invoke(std::forward< _Fn _QUALS >(_M_fn),	\
				std::forward<_Args>(__args)...);	\
	}
      _GLIBCXX_NOT_FN_CALL_OP( & )
      _GLIBCXX_NOT_FN_CALL_OP( const & )
      _GLIBCXX_NOT_FN_CALL_OP( && )
      _GLIBCXX_NOT_FN_CALL_OP( const && )
#undef _GLIBCXX_NOT_FN_CALL

    private:
      _Fn _M_fn;
    };

#if __cplusplus > 201402L
#define __cpp_lib_not_fn 201603
  /// [func.not_fn] Function template not_fn
  template<typename _Fn>
    inline auto
    not_fn(_Fn&& __fn)
    noexcept(std::is_nothrow_constructible<std::decay_t<_Fn>, _Fn&&>::value)
    {
      return _Not_fn<std::decay_t<_Fn>>{std::forward<_Fn>(__fn), 0};
    }

  // Searchers
#define __cpp_lib_boyer_moore_searcher 201603

  template<typename _ForwardIterator1, typename _BinaryPredicate = equal_to<>>
    class default_searcher
    {
    public:
      default_searcher(_ForwardIterator1 __pat_first,
		       _ForwardIterator1 __pat_last,
		       _BinaryPredicate __pred = _BinaryPredicate())
      : _M_m(__pat_first, __pat_last, std::move(__pred))
      { }

      template<typename _ForwardIterator2>
        pair<_ForwardIterator2, _ForwardIterator2>
	operator()(_ForwardIterator2 __first, _ForwardIterator2 __last) const
	{
	  _ForwardIterator2 __first_ret =
	    std::search(__first, __last, std::get<0>(_M_m), std::get<1>(_M_m),
			std::get<2>(_M_m));
	  auto __ret = std::make_pair(__first_ret, __first_ret);
	  if (__ret.first != __last)
	    std::advance(__ret.second, std::distance(std::get<0>(_M_m),
						     std::get<1>(_M_m)));
	  return __ret;
	}

    private:
      tuple<_ForwardIterator1, _ForwardIterator1, _BinaryPredicate> _M_m;
    };

  template<typename _Key, typename _Tp, typename _Hash, typename _Pred>
    struct __boyer_moore_map_base
    {
      template<typename _RAIter>
	__boyer_moore_map_base(_RAIter __pat, size_t __patlen,
			       _Hash&& __hf, _Pred&& __pred)
	: _M_bad_char{ __patlen, std::move(__hf), std::move(__pred) }
	{
	  if (__patlen > 0)
	    for (__diff_type __i = 0; __i < __patlen - 1; ++__i)
	      _M_bad_char[__pat[__i]] = __patlen - 1 - __i;
	}

      using __diff_type = _Tp;

      __diff_type
      _M_lookup(_Key __key, __diff_type __not_found) const
      {
	auto __iter = _M_bad_char.find(__key);
	if (__iter == _M_bad_char.end())
	  return __not_found;
	return __iter->second;
      }

      _Pred
      _M_pred() const { return _M_bad_char.key_eq(); }

      _GLIBCXX_STD_C::unordered_map<_Key, _Tp, _Hash, _Pred> _M_bad_char;
    };

  template<typename _Tp, size_t _Len, typename _Pred>
    struct __boyer_moore_array_base
    {
      template<typename _RAIter, typename _Unused>
	__boyer_moore_array_base(_RAIter __pat, size_t __patlen,
				 _Unused&&, _Pred&& __pred)
	: _M_bad_char{ _GLIBCXX_STD_C::array<_Tp, _Len>{}, std::move(__pred) }
	{
	  std::get<0>(_M_bad_char).fill(__patlen);
	  if (__patlen > 0)
	    for (__diff_type __i = 0; __i < __patlen - 1; ++__i)
	      {
		auto __ch = __pat[__i];
		using _UCh = make_unsigned_t<decltype(__ch)>;
		auto __uch = static_cast<_UCh>(__ch);
		std::get<0>(_M_bad_char)[__uch] = __patlen - 1 - __i;
	      }
	}

      using __diff_type = _Tp;

      template<typename _Key>
	__diff_type
	_M_lookup(_Key __key, __diff_type __not_found) const
	{
	  auto __ukey = static_cast<make_unsigned_t<_Key>>(__key);
	  if (__ukey >= _Len)
	    return __not_found;
	  return std::get<0>(_M_bad_char)[__ukey];
	}

      const _Pred&
      _M_pred() const { return std::get<1>(_M_bad_char); }

      tuple<_GLIBCXX_STD_C::array<_Tp, _Len>, _Pred> _M_bad_char;
    };

  template<typename _Pred>
    struct __is_std_equal_to : false_type { };

  template<>
    struct __is_std_equal_to<equal_to<void>> : true_type { };

  // Use __boyer_moore_array_base when pattern consists of narrow characters
  // and uses std::equal_to as the predicate.
  template<typename _RAIter, typename _Hash, typename _Pred,
           typename _Val = typename iterator_traits<_RAIter>::value_type,
	   typename _Diff = typename iterator_traits<_RAIter>::difference_type>
    using __boyer_moore_base_t
      = conditional_t<sizeof(_Val) == 1 && is_integral<_Val>::value
		      && __is_std_equal_to<_Pred>::value,
		      __boyer_moore_array_base<_Diff, 256, _Pred>,
		      __boyer_moore_map_base<_Val, _Diff, _Hash, _Pred>>;

  template<typename _RAIter, typename _Hash
	     = hash<typename iterator_traits<_RAIter>::value_type>,
	   typename _BinaryPredicate = equal_to<>>
    class boyer_moore_searcher
    : __boyer_moore_base_t<_RAIter, _Hash, _BinaryPredicate>
    {
      using _Base = __boyer_moore_base_t<_RAIter, _Hash, _BinaryPredicate>;
      using typename _Base::__diff_type;

    public:
      boyer_moore_searcher(_RAIter __pat_first, _RAIter __pat_last,
			   _Hash __hf = _Hash(),
			   _BinaryPredicate __pred = _BinaryPredicate());

      template<typename _RandomAccessIterator2>
        pair<_RandomAccessIterator2, _RandomAccessIterator2>
	operator()(_RandomAccessIterator2 __first,
		   _RandomAccessIterator2 __last) const;

    private:
      bool
      _M_is_prefix(_RAIter __word, __diff_type __len,
		   __diff_type __pos)
      {
	const auto& __pred = this->_M_pred();
	__diff_type __suffixlen = __len - __pos;
	for (__diff_type __i = 0; __i < __suffixlen; ++__i)
	  if (!__pred(__word[__i], __word[__pos + __i]))
	    return false;
	return true;
      }

      __diff_type
      _M_suffix_length(_RAIter __word, __diff_type __len,
		       __diff_type __pos)
      {
	const auto& __pred = this->_M_pred();
	__diff_type __i = 0;
	while (__pred(__word[__pos - __i], __word[__len - 1 - __i])
	       && __i < __pos)
	  {
	    ++__i;
	  }
	return __i;
      }

      template<typename _Tp>
	__diff_type
	_M_bad_char_shift(_Tp __c) const
	{ return this->_M_lookup(__c, _M_pat_end - _M_pat); }

      _RAIter _M_pat;
      _RAIter _M_pat_end;
      _GLIBCXX_STD_C::vector<__diff_type> _M_good_suffix;
    };

  template<typename _RAIter, typename _Hash
	     = hash<typename iterator_traits<_RAIter>::value_type>,
	   typename _BinaryPredicate = equal_to<>>
    class boyer_moore_horspool_searcher
    : __boyer_moore_base_t<_RAIter, _Hash, _BinaryPredicate>
    {
      using _Base = __boyer_moore_base_t<_RAIter, _Hash, _BinaryPredicate>;
      using typename _Base::__diff_type;

    public:
      boyer_moore_horspool_searcher(_RAIter __pat,
				    _RAIter __pat_end,
				    _Hash __hf = _Hash(),
				    _BinaryPredicate __pred
				    = _BinaryPredicate())
      : _Base(__pat, __pat_end - __pat, std::move(__hf), std::move(__pred)),
	_M_pat(__pat), _M_pat_end(__pat_end)
      { }

      template<typename _RandomAccessIterator2>
        pair<_RandomAccessIterator2, _RandomAccessIterator2>
	operator()(_RandomAccessIterator2 __first,
		   _RandomAccessIterator2 __last) const
	{
	  const auto& __pred = this->_M_pred();
	  auto __patlen = _M_pat_end - _M_pat;
	  if (__patlen == 0)
	    return std::make_pair(__first, __first);
	  auto __len = __last - __first;
	  while (__len >= __patlen)
	    {
	      for (auto __scan = __patlen - 1;
		   __pred(__first[__scan], _M_pat[__scan]); --__scan)
		if (__scan == 0)
		  return std::make_pair(__first, __first + __patlen);
	      auto __shift = _M_bad_char_shift(__first[__patlen - 1]);
	      __len -= __shift;
	      __first += __shift;
	    }
	  return std::make_pair(__last, __last);
	}

    private:
      template<typename _Tp>
	__diff_type
	_M_bad_char_shift(_Tp __c) const
	{ return this->_M_lookup(__c, _M_pat_end - _M_pat); }

      _RAIter _M_pat;
      _RAIter _M_pat_end;
    };

  template<typename _RAIter, typename _Hash, typename _BinaryPredicate>
    boyer_moore_searcher<_RAIter, _Hash, _BinaryPredicate>::
    boyer_moore_searcher(_RAIter __pat, _RAIter __pat_end,
			 _Hash __hf, _BinaryPredicate __pred)
    : _Base(__pat, __pat_end - __pat, std::move(__hf), std::move(__pred)),
      _M_pat(__pat), _M_pat_end(__pat_end), _M_good_suffix(__pat_end - __pat)
    {
      auto __patlen = __pat_end - __pat;
      if (__patlen == 0)
	return;
      __diff_type __last_prefix = __patlen - 1;
      for (__diff_type __p = __patlen - 1; __p >= 0; --__p)
	{
	  if (_M_is_prefix(__pat, __patlen, __p + 1))
	    __last_prefix = __p + 1;
	  _M_good_suffix[__p] = __last_prefix + (__patlen - 1 - __p);
	}
      for (__diff_type __p = 0; __p < __patlen - 1; ++__p)
	{
	  auto __slen = _M_suffix_length(__pat, __patlen, __p);
	  auto __pos = __patlen - 1 - __slen;
	  if (!__pred(__pat[__p - __slen], __pat[__pos]))
	    _M_good_suffix[__pos] = __patlen - 1 - __p + __slen;
	}
    }

  template<typename _RAIter, typename _Hash, typename _BinaryPredicate>
  template<typename _RandomAccessIterator2>
    pair<_RandomAccessIterator2, _RandomAccessIterator2>
    boyer_moore_searcher<_RAIter, _Hash, _BinaryPredicate>::
    operator()(_RandomAccessIterator2 __first,
	       _RandomAccessIterator2 __last) const
    {
      auto __patlen = _M_pat_end - _M_pat;
      if (__patlen == 0)
	return std::make_pair(__first, __first);
      const auto& __pred = this->_M_pred();
      __diff_type __i = __patlen - 1;
      auto __stringlen = __last - __first;
      while (__i < __stringlen)
	{
	  __diff_type __j = __patlen - 1;
	  while (__j >= 0 && __pred(__first[__i], _M_pat[__j]))
	    {
	      --__i;
	      --__j;
	    }
	  if (__j < 0)
	    {
	      const auto __match = __first + __i + 1;
	      return std::make_pair(__match, __match + __patlen);
	    }
	  __i += std::max(_M_bad_char_shift(__first[__i]),
			  _M_good_suffix[__j]);
	}
      return std::make_pair(__last, __last);
    }

#endif // C++17
#endif // C++14

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // C++11

#endif // _GLIBCXX_FUNCTIONAL

Filemanager

Name Type Size Permission Actions
backward Folder 0755
bits Folder 0755
debug Folder 0755
decimal Folder 0755
experimental Folder 0755
ext Folder 0755
parallel Folder 0755
profile Folder 0755
tr1 Folder 0755
tr2 Folder 0755
algorithm File 2.46 KB 0644
any File 18.48 KB 0644
array File 11.12 KB 0644
atomic File 40.01 KB 0644
bitset File 44.81 KB 0644
cassert File 1.61 KB 0644
ccomplex File 1.3 KB 0644
cctype File 2.35 KB 0644
cerrno File 1.73 KB 0644
cfenv File 2 KB 0644
cfloat File 1.84 KB 0644
chrono File 29.38 KB 0644
cinttypes File 2.11 KB 0644
ciso646 File 1.43 KB 0644
climits File 1.87 KB 0644
clocale File 1.86 KB 0644
cmath File 47.35 KB 0644
codecvt File 5.22 KB 0644
complex File 52.93 KB 0644
complex.h File 1.43 KB 0644
condition_variable File 8.74 KB 0644
csetjmp File 1.9 KB 0644
csignal File 1.81 KB 0644
cstdalign File 1.37 KB 0644
cstdarg File 1.82 KB 0644
cstdbool File 1.37 KB 0644
cstddef File 6.29 KB 0644
cstdint File 2.12 KB 0644
cstdio File 4.33 KB 0644
cstdlib File 6.18 KB 0644
cstring File 3.05 KB 0644
ctgmath File 1.33 KB 0644
ctime File 2.08 KB 0644
cuchar File 2.16 KB 0644
cwchar File 6.36 KB 0644
cwctype File 2.73 KB 0644
cxxabi.h File 21.46 KB 0644
deque File 2.6 KB 0644
exception File 4.67 KB 0644
fenv.h File 1.97 KB 0644
forward_list File 1.54 KB 0644
fstream File 33.05 KB 0644
functional File 38.64 KB 0644
future File 49.49 KB 0644
initializer_list File 2.9 KB 0644
iomanip File 15.75 KB 0644
ios File 1.56 KB 0644
iosfwd File 6.76 KB 0644
iostream File 2.63 KB 0644
istream File 32.07 KB 0644
iterator File 2.58 KB 0644
limits File 67.56 KB 0644
list File 2.53 KB 0644
locale File 1.45 KB 0644
map File 2.5 KB 0644
math.h File 4.28 KB 0644
memory File 4.6 KB 0644
mutex File 17.88 KB 0644
new File 7.33 KB 0644
numeric File 5.11 KB 0644
optional File 30.39 KB 0644
ostream File 21.46 KB 0644
queue File 2.41 KB 0644
random File 1.65 KB 0644
ratio File 19.42 KB 0644
regex File 1.85 KB 0644
scoped_allocator File 15.84 KB 0644
set File 2.5 KB 0644
shared_mutex File 18.95 KB 0644
sstream File 26.21 KB 0644
stack File 2.33 KB 0644
stdexcept File 7.79 KB 0644
stdlib.h File 2.2 KB 0644
streambuf File 28.87 KB 0644
string File 1.89 KB 0644
string_view File 20.8 KB 0644
system_error File 11.25 KB 0644
tgmath.h File 1.33 KB 0644
thread File 10.03 KB 0644
tuple File 58.22 KB 0644
type_traits File 90.28 KB 0644
typeindex File 3.02 KB 0644
typeinfo File 7.51 KB 0644
unordered_map File 1.81 KB 0644
unordered_set File 1.81 KB 0644
utility File 12.16 KB 0644
valarray File 39.33 KB 0644
variant File 42.09 KB 0644
vector File 2.68 KB 0644