404

[ Avaa Bypassed ]




Upload:

Command:

botdev@18.119.192.176: ~ $
/*
 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H

#include <asm/cpucaps.h>
#include <asm/cputype.h>
#include <asm/fpsimd.h>
#include <asm/hwcap.h>
#include <asm/sigcontext.h>
#include <asm/sysreg.h>

/*
 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
 * in the kernel and for user space to keep track of which optional features
 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
 * Note that HWCAP_x constants are bit fields so we need to take the log.
 */

#define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
#define cpu_feature(x)		ilog2(HWCAP_ ## x)

#ifndef __ASSEMBLY__

#include <linux/bug.h>
#include <linux/jump_label.h>
#include <linux/kernel.h>

/*
 * CPU feature register tracking
 *
 * The safe value of a CPUID feature field is dependent on the implications
 * of the values assigned to it by the architecture. Based on the relationship
 * between the values, the features are classified into 3 types - LOWER_SAFE,
 * HIGHER_SAFE and EXACT.
 *
 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
 * a field when EXACT is specified, failing which, the safe value specified
 * in the table is chosen.
 */

enum ftr_type {
	FTR_EXACT,			/* Use a predefined safe value */
	FTR_LOWER_SAFE,			/* Smaller value is safe */
	FTR_HIGHER_SAFE,		/* Bigger value is safe */
	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
};

#define FTR_STRICT	true	/* SANITY check strict matching required */
#define FTR_NONSTRICT	false	/* SANITY check ignored */

#define FTR_SIGNED	true	/* Value should be treated as signed */
#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */

#define FTR_VISIBLE	true	/* Feature visible to the user space */
#define FTR_HIDDEN	false	/* Feature is hidden from the user */

#define FTR_VISIBLE_IF_IS_ENABLED(config)		\
	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)

struct arm64_ftr_bits {
	bool		sign;	/* Value is signed ? */
	bool		visible;
	bool		strict;	/* CPU Sanity check: strict matching required ? */
	enum ftr_type	type;
	u8		shift;
	u8		width;
	s64		safe_val; /* safe value for FTR_EXACT features */
};

/*
 * @arm64_ftr_reg - Feature register
 * @strict_mask		Bits which should match across all CPUs for sanity.
 * @sys_val		Safe value across the CPUs (system view)
 */
struct arm64_ftr_reg {
	const char			*name;
	u64				strict_mask;
	u64				user_mask;
	u64				sys_val;
	u64				user_val;
	const struct arm64_ftr_bits	*ftr_bits;
};

extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;

/*
 * CPU capabilities:
 *
 * We use arm64_cpu_capabilities to represent system features, errata work
 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
 * ELF HWCAPs (which are exposed to user).
 *
 * To support systems with heterogeneous CPUs, we need to make sure that we
 * detect the capabilities correctly on the system and take appropriate
 * measures to ensure there are no incompatibilities.
 *
 * This comment tries to explain how we treat the capabilities.
 * Each capability has the following list of attributes :
 *
 * 1) Scope of Detection : The system detects a given capability by
 *    performing some checks at runtime. This could be, e.g, checking the
 *    value of a field in CPU ID feature register or checking the cpu
 *    model. The capability provides a call back ( @matches() ) to
 *    perform the check. Scope defines how the checks should be performed.
 *    There are three cases:
 *
 *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
 *        matches. This implies, we have to run the check on all the
 *        booting CPUs, until the system decides that state of the
 *        capability is finalised. (See section 2 below)
 *		Or
 *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
 *        matches. This implies, we run the check only once, when the
 *        system decides to finalise the state of the capability. If the
 *        capability relies on a field in one of the CPU ID feature
 *        registers, we use the sanitised value of the register from the
 *        CPU feature infrastructure to make the decision.
 *		Or
 *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
 *        feature. This category is for features that are "finalised"
 *        (or used) by the kernel very early even before the SMP cpus
 *        are brought up.
 *
 *    The process of detection is usually denoted by "update" capability
 *    state in the code.
 *
 * 2) Finalise the state : The kernel should finalise the state of a
 *    capability at some point during its execution and take necessary
 *    actions if any. Usually, this is done, after all the boot-time
 *    enabled CPUs are brought up by the kernel, so that it can make
 *    better decision based on the available set of CPUs. However, there
 *    are some special cases, where the action is taken during the early
 *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
 *    Virtualisation Host Extensions). The kernel usually disallows any
 *    changes to the state of a capability once it finalises the capability
 *    and takes any action, as it may be impossible to execute the actions
 *    safely. A CPU brought up after a capability is "finalised" is
 *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
 *    CPUs are treated "late CPUs" for capabilities determined by the boot
 *    CPU.
 *
 *    At the moment there are two passes of finalising the capabilities.
 *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
 *         setup_boot_cpu_capabilities().
 *      b) Everything except (a) - Run via setup_system_capabilities().
 *
 * 3) Verification: When a CPU is brought online (e.g, by user or by the
 *    kernel), the kernel should make sure that it is safe to use the CPU,
 *    by verifying that the CPU is compliant with the state of the
 *    capabilities finalised already. This happens via :
 *
 *	secondary_start_kernel()-> check_local_cpu_capabilities()
 *
 *    As explained in (2) above, capabilities could be finalised at
 *    different points in the execution. Each newly booted CPU is verified
 *    against the capabilities that have been finalised by the time it
 *    boots.
 *
 *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
 *	except for the primary boot CPU.
 *
 *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
 *	user after the kernel boot are verified against the capability.
 *
 *    If there is a conflict, the kernel takes an action, based on the
 *    severity (e.g, a CPU could be prevented from booting or cause a
 *    kernel panic). The CPU is allowed to "affect" the state of the
 *    capability, if it has not been finalised already. See section 5
 *    for more details on conflicts.
 *
 * 4) Action: As mentioned in (2), the kernel can take an action for each
 *    detected capability, on all CPUs on the system. Appropriate actions
 *    include, turning on an architectural feature, modifying the control
 *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
 *    alternatives. The kernel patching is batched and performed at later
 *    point. The actions are always initiated only after the capability
 *    is finalised. This is usally denoted by "enabling" the capability.
 *    The actions are initiated as follows :
 *	a) Action is triggered on all online CPUs, after the capability is
 *	finalised, invoked within the stop_machine() context from
 *	enable_cpu_capabilitie().
 *
 *	b) Any late CPU, brought up after (1), the action is triggered via:
 *
 *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
 *
 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
 *    the system state, we could have the following combinations :
 *
 *		x-----------------------------x
 *		| Type  | System   | Late CPU |
 *		|-----------------------------|
 *		|  a    |   y      |    n     |
 *		|-----------------------------|
 *		|  b    |   n      |    y     |
 *		x-----------------------------x
 *
 *     Two separate flag bits are defined to indicate whether each kind of
 *     conflict can be allowed:
 *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
 *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
 *
 *     Case (a) is not permitted for a capability that the system requires
 *     all CPUs to have in order for the capability to be enabled. This is
 *     typical for capabilities that represent enhanced functionality.
 *
 *     Case (b) is not permitted for a capability that must be enabled
 *     during boot if any CPU in the system requires it in order to run
 *     safely. This is typical for erratum work arounds that cannot be
 *     enabled after the corresponding capability is finalised.
 *
 *     In some non-typical cases either both (a) and (b), or neither,
 *     should be permitted. This can be described by including neither
 *     or both flags in the capability's type field.
 */


/*
 * Decide how the capability is detected.
 * On any local CPU vs System wide vs the primary boot CPU
 */
#define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
#define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
/*
 * The capabilitiy is detected on the Boot CPU and is used by kernel
 * during early boot. i.e, the capability should be "detected" and
 * "enabled" as early as possibly on all booting CPUs.
 */
#define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
#define ARM64_CPUCAP_SCOPE_MASK			\
	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
	 ARM64_CPUCAP_SCOPE_BOOT_CPU)

#define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
#define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
#define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
#define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK

/*
 * Is it permitted for a late CPU to have this capability when system
 * hasn't already enabled it ?
 */
#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
/* Is it safe for a late CPU to miss this capability when system has it */
#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))

/*
 * CPU errata workarounds that need to be enabled at boot time if one or
 * more CPUs in the system requires it. When one of these capabilities
 * has been enabled, it is safe to allow any CPU to boot that doesn't
 * require the workaround. However, it is not safe if a "late" CPU
 * requires a workaround and the system hasn't enabled it already.
 */
#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
/*
 * CPU feature detected at boot time based on system-wide value of a
 * feature. It is safe for a late CPU to have this feature even though
 * the system hasn't enabled it, although the featuer will not be used
 * by Linux in this case. If the system has enabled this feature already,
 * then every late CPU must have it.
 */
#define ARM64_CPUCAP_SYSTEM_FEATURE	\
	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
/*
 * CPU feature detected at boot time based on feature of one or more CPUs.
 * All possible conflicts for a late CPU are ignored.
 */
#define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)

/*
 * CPU feature detected at boot time, on one or more CPUs. A late CPU
 * is not allowed to have the capability when the system doesn't have it.
 * It is Ok for a late CPU to miss the feature.
 */
#define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)

/*
 * CPU feature used early in the boot based on the boot CPU. All secondary
 * CPUs must match the state of the capability as detected by the boot CPU.
 */
#define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU

struct arm64_cpu_capabilities {
	const char *desc;
	u16 capability;
	u16 type;
	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
	/*
	 * Take the appropriate actions to enable this capability for this CPU.
	 * For each successfully booted CPU, this method is called for each
	 * globally detected capability.
	 */
	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
	union {
		struct {	/* To be used for erratum handling only */
			struct midr_range midr_range;
		};

		const struct midr_range *midr_range_list;
		struct {	/* Feature register checking */
			u32 sys_reg;
			u8 field_pos;
			u8 min_field_value;
			u8 hwcap_type;
			bool sign;
			unsigned long hwcap;
		};
	};
};

static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
{
	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
}

static inline bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
{
	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
}

static inline bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
{
	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
}

extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
extern struct static_key_false arm64_const_caps_ready;

bool this_cpu_has_cap(unsigned int cap);

static inline bool cpu_have_feature(unsigned int num)
{
	return elf_hwcap & (1UL << num);
}

/* System capability check for constant caps */
static inline bool __cpus_have_const_cap(int num)
{
	if (num >= ARM64_NCAPS)
		return false;
	return static_branch_unlikely(&cpu_hwcap_keys[num]);
}

static inline bool cpus_have_cap(unsigned int num)
{
	if (num >= ARM64_NCAPS)
		return false;
	return test_bit(num, cpu_hwcaps);
}

static inline bool cpus_have_const_cap(int num)
{
	if (static_branch_likely(&arm64_const_caps_ready))
		return __cpus_have_const_cap(num);
	else
		return cpus_have_cap(num);
}

static inline void cpus_set_cap(unsigned int num)
{
	if (num >= ARM64_NCAPS) {
		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
			num, ARM64_NCAPS);
	} else {
		__set_bit(num, cpu_hwcaps);
	}
}

static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
{
	return (s64)(features << (64 - width - field)) >> (64 - width);
}

static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features, int field)
{
	return cpuid_feature_extract_signed_field_width(features, field, 4);
}

static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
	return (u64)(features << (64 - width - field)) >> (64 - width);
}

static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}

static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
{
	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}

static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
{
	return (reg->user_val | (reg->sys_val & reg->user_mask));
}

static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
{
	return (sign) ?
		cpuid_feature_extract_signed_field_width(features, field, width) :
		cpuid_feature_extract_unsigned_field_width(features, field, width);
}

static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
	return cpuid_feature_extract_field_width(features, field, 4, sign);
}

static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
{
	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
}

static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
{
	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
}

static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);

	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
}

static inline bool id_aa64pfr0_sve(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);

	return val > 0;
}

void __init setup_cpu_features(void);
void check_local_cpu_capabilities(void);


u64 read_sanitised_ftr_reg(u32 id);

static inline bool cpu_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}

static inline bool supports_csv2p3(int scope)
{
	u64 pfr0;
	u8 csv2_val;

	if (scope == SCOPE_LOCAL_CPU)
		pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
	else
		pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);

	csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
							ID_AA64PFR0_CSV2_SHIFT);
	return csv2_val == 3;
}

static inline bool supports_clearbhb(int scope)
{
	u64 isar2;

	if (scope == SCOPE_LOCAL_CPU)
		isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
	else
		isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);

	return cpuid_feature_extract_unsigned_field(isar2,
						    ID_AA64ISAR2_CLEARBHB_SHIFT);
}

static inline bool system_supports_32bit_el0(void)
{
	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
}

static inline bool system_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
}

static inline bool system_supports_fpsimd(void)
{
	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
}

static inline bool system_uses_ttbr0_pan(void)
{
	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
		!cpus_have_const_cap(ARM64_HAS_PAN);
}

static inline bool system_supports_sve(void)
{
	return IS_ENABLED(CONFIG_ARM64_SVE) &&
		cpus_have_const_cap(ARM64_SVE);
}

/*
 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
 * vector length.
 *
 * Use only if SVE is present.
 * This function clobbers the SVE vector length.
 */
static inline u64 read_zcr_features(void)
{
	u64 zcr;
	unsigned int vq_max;

	/*
	 * Set the maximum possible VL, and write zeroes to all other
	 * bits to see if they stick.
	 */
	sve_kernel_enable(NULL);
	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);

	zcr = read_sysreg_s(SYS_ZCR_EL1);
	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
	vq_max = sve_vq_from_vl(sve_get_vl());
	zcr |= vq_max - 1; /* set LEN field to maximum effective value */

	return zcr;
}

#define ARM64_SSBD_UNKNOWN		-1
#define ARM64_SSBD_FORCE_DISABLE	0
#define ARM64_SSBD_KERNEL		1
#define ARM64_SSBD_FORCE_ENABLE		2
#define ARM64_SSBD_MITIGATED		3

static inline int arm64_get_ssbd_state(void)
{
#ifdef CONFIG_ARM64_SSBD
	extern int ssbd_state;
	return ssbd_state;
#else
	return ARM64_SSBD_UNKNOWN;
#endif
}

void arm64_set_ssbd_mitigation(bool state);

/* Watch out, ordering is important here. */
enum mitigation_state {
	SPECTRE_UNAFFECTED,
	SPECTRE_MITIGATED,
	SPECTRE_VULNERABLE,
};

enum mitigation_state arm64_get_spectre_bhb_state(void);
bool is_spectre_bhb_affected(const struct arm64_cpu_capabilities *entry, int scope);
u8 spectre_bhb_loop_affected(int scope);
void spectre_bhb_enable_mitigation(const struct arm64_cpu_capabilities *__unused);
#endif /* __ASSEMBLY__ */

#endif

Filemanager

Name Type Size Permission Actions
xen Folder 0755
Kbuild File 703 B 0644
acenv.h File 541 B 0644
acpi.h File 4.34 KB 0644
alternative.h File 7.63 KB 0644
arch_gicv3.h File 3.44 KB 0644
arch_timer.h File 4.87 KB 0644
arm-cci.h File 794 B 0644
asm-bug.h File 1.45 KB 0644
asm-offsets.h File 35 B 0644
asm-uaccess.h File 2.09 KB 0644
assembler.h File 13.51 KB 0644
atomic.h File 8.35 KB 0644
atomic_ll_sc.h File 10.61 KB 0644
atomic_lse.h File 14.82 KB 0644
barrier.h File 3.78 KB 0644
bitops.h File 1.9 KB 0644
bitrev.h File 452 B 0644
boot.h File 384 B 0644
brk-imm.h File 706 B 0644
bug.h File 1.09 KB 0644
cache.h File 2.23 KB 0644
cacheflush.h File 4.87 KB 0644
checksum.h File 1.35 KB 0644
clocksource.h File 192 B 0644
cmpxchg.h File 7.98 KB 0644
compat.h File 7.15 KB 0644
compiler.h File 1.18 KB 0644
cpu.h File 1.84 KB 0644
cpu_ops.h File 2.73 KB 0644
cpucaps.h File 1.87 KB 0644
cpufeature.h File 19.14 KB 0644
cpuidle.h File 401 B 0644
cputype.h File 8.1 KB 0644
current.h File 517 B 0644
daifflags.h File 1.59 KB 0644
dcc.h File 1.36 KB 0644
debug-monitors.h File 3.76 KB 0644
device.h File 886 B 0644
dma-mapping.h File 2.42 KB 0644
dmi.h File 850 B 0644
efi.h File 4.57 KB 0644
elf.h File 5.7 KB 0644
esr.h File 9.02 KB 0644
exception.h File 1.21 KB 0644
exec.h File 868 B 0644
extable.h File 815 B 0644
fb.h File 1000 B 0644
fixmap.h File 2.91 KB 0644
fpsimd.h File 4.21 KB 0644
fpsimdmacros.h File 5.62 KB 0644
ftrace.h File 1.92 KB 0644
futex.h File 3.41 KB 0644
hardirq.h File 2.08 KB 0644
hugetlb.h File 2.71 KB 0644
hw_breakpoint.h File 4.46 KB 0644
hwcap.h File 1.86 KB 0644
hypervisor.h File 144 B 0644
insn.h File 16.03 KB 0644
io.h File 7.72 KB 0644
irq.h File 307 B 0644
irq_work.h File 228 B 0644
irqflags.h File 2.3 KB 0644
jump_label.h File 1.68 KB 0644
kasan.h File 1.16 KB 0644
kernel-pgtable.h File 4.03 KB 0644
kexec.h File 2.42 KB 0644
kgdb.h File 3.79 KB 0644
kprobes.h File 1.74 KB 0644
kvm_arm.h File 8.38 KB 0644
kvm_asm.h File 4.26 KB 0644
kvm_coproc.h File 2.04 KB 0644
kvm_emulate.h File 10.38 KB 0644
kvm_host.h File 15.73 KB 0644
kvm_hyp.h File 5.79 KB 0644
kvm_mmio.h File 1.3 KB 0644
kvm_mmu.h File 11.72 KB 0644
linkage.h File 114 B 0644
lse.h File 1.26 KB 0644
memblock.h File 720 B 0644
memory.h File 9.16 KB 0644
mmu.h File 2.76 KB 0644
mmu_context.h File 6.35 KB 0644
mmzone.h File 266 B 0644
module.h File 2.8 KB 0644
neon.h File 815 B 0644
numa.h File 1.33 KB 0644
page-def.h File 1.17 KB 0644
page.h File 1.61 KB 0644
paravirt.h File 458 B 0644
pci.h File 878 B 0644
percpu.h File 7.48 KB 0644
perf_event.h File 3.17 KB 0644
pgalloc.h File 3.71 KB 0644
pgtable-hwdef.h File 9.4 KB 0644
pgtable-prot.h File 4.38 KB 0644
pgtable-types.h File 1.84 KB 0644
pgtable.h File 21.55 KB 0644
probes.h File 1022 B 0644
proc-fns.h File 1.21 KB 0644
processor.h File 6.52 KB 0644
ptdump.h File 1.42 KB 0644
ptrace.h File 9 KB 0644
sdei.h File 1.46 KB 0644
seccomp.h File 714 B 0644
sections.h File 1.46 KB 0644
shmparam.h File 965 B 0644
signal32.h File 1.45 KB 0644
simd.h File 1.39 KB 0644
smp.h File 4.23 KB 0644
smp_plat.h File 1.43 KB 0644
sparsemem.h File 771 B 0644
spinlock.h File 3.33 KB 0644
spinlock_types.h File 1.06 KB 0644
stack_pointer.h File 247 B 0644
stackprotector.h File 1.11 KB 0644
stacktrace.h File 2.53 KB 0644
stage2_pgtable-nopmd.h File 1.3 KB 0644
stage2_pgtable-nopud.h File 1.24 KB 0644
stage2_pgtable.h File 4.89 KB 0644
stat.h File 1.43 KB 0644
string.h File 2.33 KB 0644
suspend.h File 1.65 KB 0644
sync_bitops.h File 1.11 KB 0644
syscall.h File 2.87 KB 0644
sysreg.h File 25.1 KB 0644
system_misc.h File 1.86 KB 0644
thread_info.h File 3.93 KB 0644
timex.h File 883 B 0644
tlb.h File 2.22 KB 0644
tlbflush.h File 5.38 KB 0644
topology.h File 1.29 KB 0644
traps.h File 3.33 KB 0644
uaccess.h File 12.01 KB 0644
unistd.h File 1.6 KB 0644
unistd32.h File 27.53 KB 0644
uprobes.h File 777 B 0644
vdso.h File 1.09 KB 0644
vdso_datapage.h File 1.53 KB 0644
vectors.h File 1.75 KB 0644
virt.h File 3 KB 0644
vmap_stack.h File 769 B 0644
word-at-a-time.h File 2.22 KB 0644